3.858 \(\int \frac{\sqrt{a+b x+c x^2}}{(d+e x) (f+g x)} \, dx\)

Optimal. Leaf size=228 \[ \frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e (e f-d g)}-\frac{\sqrt{a g^2-b f g+c f^2} \tanh ^{-1}\left (\frac{-2 a g+x (2 c f-b g)+b f}{2 \sqrt{a+b x+c x^2} \sqrt{a g^2-b f g+c f^2}}\right )}{g (e f-d g)}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{e g} \]

[Out]

(Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(e*g) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[
(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(e*(e*f - d*g)) - (Sqr
t[c*f^2 - b*f*g + a*g^2]*ArcTanh[(b*f - 2*a*g + (2*c*f - b*g)*x)/(2*Sqrt[c*f^2 - b*f*g + a*g^2]*Sqrt[a + b*x +
 c*x^2])])/(g*(e*f - d*g))

________________________________________________________________________________________

Rubi [A]  time = 0.330511, antiderivative size = 228, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {895, 724, 206, 843, 621} \[ \frac{\sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+x (2 c d-b e)+b d}{2 \sqrt{a+b x+c x^2} \sqrt{a e^2-b d e+c d^2}}\right )}{e (e f-d g)}-\frac{\sqrt{a g^2-b f g+c f^2} \tanh ^{-1}\left (\frac{-2 a g+x (2 c f-b g)+b f}{2 \sqrt{a+b x+c x^2} \sqrt{a g^2-b f g+c f^2}}\right )}{g (e f-d g)}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{e g} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/((d + e*x)*(f + g*x)),x]

[Out]

(Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(e*g) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[
(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(e*(e*f - d*g)) - (Sqr
t[c*f^2 - b*f*g + a*g^2]*ArcTanh[(b*f - 2*a*g + (2*c*f - b*g)*x)/(2*Sqrt[c*f^2 - b*f*g + a*g^2]*Sqrt[a + b*x +
 c*x^2])])/(g*(e*f - d*g))

Rule 895

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Dist[(c
*d^2 - b*d*e + a*e^2)/(e*(e*f - d*g)), Int[(a + b*x + c*x^2)^(p - 1)/(d + e*x), x], x] - Dist[1/(e*(e*f - d*g)
), Int[(Simp[c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x, x]*(a + b*x + c*x^2)^(p - 1))/(f + g*x), x], x] /; FreeQ
[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && Fra
ctionQ[p] && GtQ[p, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x+c x^2}}{(d+e x) (f+g x)} \, dx &=-\frac{\int \frac{c d f-b e f+a e g-c (e f-d g) x}{(f+g x) \sqrt{a+b x+c x^2}} \, dx}{e (e f-d g)}+\frac{\left (c d^2-b d e+a e^2\right ) \int \frac{1}{(d+e x) \sqrt{a+b x+c x^2}} \, dx}{e (e f-d g)}\\ &=\frac{c \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{e g}-\frac{\left (2 \left (c d^2-b d e+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac{-b d+2 a e-(2 c d-b e) x}{\sqrt{a+b x+c x^2}}\right )}{e (e f-d g)}-\frac{\left (c f^2-b f g+a g^2\right ) \int \frac{1}{(f+g x) \sqrt{a+b x+c x^2}} \, dx}{g (e f-d g)}\\ &=\frac{\sqrt{c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x+c x^2}}\right )}{e (e f-d g)}+\frac{(2 c) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{e g}+\frac{\left (2 \left (c f^2-b f g+a g^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c f^2-4 b f g+4 a g^2-x^2} \, dx,x,\frac{-b f+2 a g-(2 c f-b g) x}{\sqrt{a+b x+c x^2}}\right )}{g (e f-d g)}\\ &=\frac{\sqrt{c} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{e g}+\frac{\sqrt{c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac{b d-2 a e+(2 c d-b e) x}{2 \sqrt{c d^2-b d e+a e^2} \sqrt{a+b x+c x^2}}\right )}{e (e f-d g)}-\frac{\sqrt{c f^2-b f g+a g^2} \tanh ^{-1}\left (\frac{b f-2 a g+(2 c f-b g) x}{2 \sqrt{c f^2-b f g+a g^2} \sqrt{a+b x+c x^2}}\right )}{g (e f-d g)}\\ \end{align*}

Mathematica [A]  time = 0.347088, size = 218, normalized size = 0.96 \[ \frac{g \sqrt{a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac{-2 a e+b d-b e x+2 c d x}{2 \sqrt{a+x (b+c x)} \sqrt{a e^2-b d e+c d^2}}\right )+\sqrt{c} (e f-d g) \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right )-e \sqrt{a g^2-b f g+c f^2} \tanh ^{-1}\left (\frac{-2 a g+b f-b g x+2 c f x}{2 \sqrt{a+x (b+c x)} \sqrt{a g^2-b f g+c f^2}}\right )}{e g (e f-d g)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/((d + e*x)*(f + g*x)),x]

[Out]

(Sqrt[c]*(e*f - d*g)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])] + Sqrt[c*d^2 - b*d*e + a*e^2]*g*Ar
cTanh[(b*d - 2*a*e + 2*c*d*x - b*e*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + x*(b + c*x)])] - e*Sqrt[c*f^2 -
b*f*g + a*g^2]*ArcTanh[(b*f - 2*a*g + 2*c*f*x - b*g*x)/(2*Sqrt[c*f^2 - b*f*g + a*g^2]*Sqrt[a + x*(b + c*x)])])
/(e*g*(e*f - d*g))

________________________________________________________________________________________

Maple [B]  time = 0.517, size = 1529, normalized size = 6.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(e*x+d)/(g*x+f),x)

[Out]

-1/(d*g-e*f)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)-1/2/(d*g-e*f)*ln((1/2*(b*e-2*c*
d)/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b+1/(d*g-e*
f)/e*ln((1/2*(b*e-2*c*d)/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2
))*c^(1/2)*d+1/(d*g-e*f)/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2
*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*a
-1/(d*g-e*f)/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b
*d*e+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*b*d+1/(d*g-
e*f)/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(d/e+x)+2*((a*e^2-b*d*e+c
*d^2)/e^2)^(1/2)*((d/e+x)^2*c+(b*e-2*c*d)/e*(d/e+x)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(d/e+x))*c*d^2+1/(d*g-e*f)
*((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2)+1/2/(d*g-e*f)*ln((1/2*(b*g-2*c*f)/g+(x+f/g)
*c)/c^(1/2)+((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2))/c^(1/2)*b-1/(d*g-e*f)/g*ln((1/2
*(b*g-2*c*f)/g+(x+f/g)*c)/c^(1/2)+((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2))*c^(1/2)*f
-1/(d*g-e*f)/((a*g^2-b*f*g+c*f^2)/g^2)^(1/2)*ln((2*(a*g^2-b*f*g+c*f^2)/g^2+(b*g-2*c*f)/g*(x+f/g)+2*((a*g^2-b*f
*g+c*f^2)/g^2)^(1/2)*((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2))/(x+f/g))*a+1/(d*g-e*f)
/g/((a*g^2-b*f*g+c*f^2)/g^2)^(1/2)*ln((2*(a*g^2-b*f*g+c*f^2)/g^2+(b*g-2*c*f)/g*(x+f/g)+2*((a*g^2-b*f*g+c*f^2)/
g^2)^(1/2)*((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2))/(x+f/g))*b*f-1/(d*g-e*f)/g^2/((a
*g^2-b*f*g+c*f^2)/g^2)^(1/2)*ln((2*(a*g^2-b*f*g+c*f^2)/g^2+(b*g-2*c*f)/g*(x+f/g)+2*((a*g^2-b*f*g+c*f^2)/g^2)^(
1/2)*((x+f/g)^2*c+(b*g-2*c*f)/g*(x+f/g)+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2))/(x+f/g))*c*f^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)/(g*x+f),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)/(g*x+f),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x + c x^{2}}}{\left (d + e x\right ) \left (f + g x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(e*x+d)/(g*x+f),x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/((d + e*x)*(f + g*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)/(g*x+f),x, algorithm="giac")

[Out]

Exception raised: TypeError